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Bifurcations and chaos in a model of a rolling
railway wheelset

By CarsteN KNUDSENY?, RasMUus FELDBERGY? AND Haxs TrRug*?

Y Physics Laboratory 111, ® Laboratory of Applied Mathematical Physics and ® Center
Sfor Modelling, Nonlinear Dynamics and Irreversible Thermodynamics (MIDIT), The
Technical University of Denmark, DK-2800 Lyngby, Denmark

In this paper we present the results of a numerical investigation of the dynamics of
a model of a suspended railway wheelset in the speed range between 0 and
180 km h™'. The wheel rolls on a straight and horizontal track unaffected by external
torques. A nonlinear relation between the creepage and the creep forces in the ideal
wheel rail contact point is used. The effect of flange contact is modelled by a very stiff
spring with a dead band. The suspension elements have linear characteristics, and
the wheel profile is assumed to be conical. All other parameters than the speed are
kept constant.

Both symmetric and asymmetric oscillations and chaotic motion are found. The
results are presented as bifurcation diagrams, time series and Poincaré section plots.
We apply bifurcation and path following routines to obtain the results.

In the last chapter we examine one of the chaotic regions with the help of symbolic
dynamics.
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1. Introduction

Railway vehicle dynamics is a fascinating topic in nonlinear mathematics and
engineering. It is applicable to problems in the real world, and it is finite (although
most often ‘many’) dimensional, so a solid foundation of mathematical theory exists
and many methods are available to examine the problems. A variety of nonlinearities
are imbedded in the problem formulations and therefore a variety of nonlinear effects
are found in the results.

In this paper we examine a simple problem of motion. We consider a wheelset
suspended under a moving car. No torques from motors or brakes act on the
wheelset. It has been known since the early days of the railways that such a wheelset
at higher velocities may oscillate in a lateral and yaw motion between the rails. This
oscillation has a negative effect on riding comfort, and it increases the wear and
therefore leads to higher maintenance costs. The phenomenon has therefore been the
topic of several experimental and some theoretical investigations over the years.

The general situation is the following. Up to a certain speed the irregular motions
of the vehicle will exclusively be a response to irregularities in the track geometry.
Above a ‘characteristic’ speed, which for the same vehicle depends on external
disturbances (e.g. track geometry or changes in the coefficient of friction), the vehicle
will oscillate in the lateral and yaw direction. A linear stability analysis will most
often yield a characteristic speed above the experimentally determined characteristic
speeds, and much effort was spent trying to explain this fact. It was the nonlinear
dynamical theory that finally yielded a satisfactory explanation.
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456 C. Knudsen, R. Feldberg and H. True

The fundamental guidance system of railways consists of a flanged wheelset rolling
on two rails. A clearance is provided between the outer edge of the flange and the
inner face of the rail to prevent squeezing of the wheels between the rails. The cross
section of the wheel tread is called the wheel profile. The angle between the tangent
to the wheel profile and the centreline of the wheelset is most often positive. This
makes the wheel kinematically self-centring.

If a disturbance pushes the wheelset laterally, the two wheels on the axle will roll
on different radii. The difference in rolling radii will turn the wheelset and move it
back towards its centred position. It is the cause of a kinematic instability, which
was examined by Klingel (1883) in a celebrated paper. Since all dynamical forces
were neglected, however, Klingel could not explain the discrepancies between the
theoretically predicted critical speed and the experimental results.

The first work on the stability problem, where the dynamics was also included, was
done by De Pater (1960). It was followed by papers by Matsudaira (1960) and
Wickens (1965). These early works initiated a new wave of investigations around the
world. We shall here only mention two articles, which are particularly relevant for
this article, namely Cooperrider (1971) and the first bifurcation analysis of the
problem by Huilgol (1978). For further references the reader is referred to the book
edited by Kisilowski & Knothe (1991).

In this article we shall extend the investigation of the dynamical behaviour of the
wheelset beyond the critical speed, where a Hopf bifurcation creates an auto-
oscillation. The railway engineers call it ‘hunting’. We treat the mathematical
model as a parameter dependent dynamical system with the speed as the control
parameter. It turns out that the system possesses a great variety of periodic and
chaotic modes.

Kaas-Petersen (1986a) discovered chaos in railway dynamics. Meijaard & De
Pater (1989) found chaos in the motion of a wheelset on a sineous track, and True
(1989) continued Kaas-Petersens work. Jaschinski (1990) described chaotic be-
haviour of a bogie in his thesis and most recently Knudsen et al. (1991) found chaos
in a model of a wheelset without flanges.

Chaos and bifurcations are the topics of several recent textbooks. In the context
of the concepts, definitions and methods in this article we refer the reader to the
books by Thompson & Stewart (1986) and Guckenheimer & Holmes (1983).

Our article is divided into six additional sections. In §2 the model is described.
Section 3 contains the mathematical equations, and in §4 we explain how the
problem is investigated. The results are presented in §5 and in connection herewith
we analyse the supposed chaos in §6 with the use of symbolic dynamics in one of the
speed intervals. Section 7 contains the conclusions.

2. The model

The mechanical problem to be considered is that of a guided wheelset under a car
moving with constant speed along an ideal, rigid, straight and horizontal track. The
speed V' is the control parameter in the problem. To illustrate a variety of possible
motions we shall consider here a case close to the ‘worst possible case’ with no
damping and no yaw stiffness.

The wheelset has two wheels rigidly connected with an axle. The wheels are
frustums of a cone with slope A. The wheels roll on rail surfaces, which are assumed
to be an arc of a circle with radius r,. The restoring force from the flanges on the

Phal. Trans. R. Soc. Lond. A (1992)
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It

X

Figure 1. Arrangement of the wheelset with moving coordinate system.

wheels is approximated by a strong linear spring with a dead band and no damping.
The wheelset can roll and move laterally without friction in a frame. The lateral
motion is restricted by linear springs with no damping.

The frame can rotate around a frictionless vertical pivot, which is fixed in the car
floor. The wheels, the axle, the frame and the car are all assumed to be rigid bodies.
Figure 1 shows the arrangement of the wheelset.

The resultant of the normal forces exerted between the wheels and the rails
generally has a lateral component. It vanishes in our model, because the wheel profile
is conical.

Friction is only included in the contact forces between the wheels and the rail.
When a loaded wheel rolls and simultaneously experiences a lateral or longitudinal
force, tangential or shear stresses are generated in the contact zone between the
elastic bodies. Under such rolling conditions the two bodies remain locked together
over a portion of the contact region, as they would, if rolling took place without
slip. However, slip does occur between the wheel and the rail in the remainder of the
contact zone. This gives rise to a very complicated strain—stress relation in the
contact surface.

Over the years simpler models of the strain—stress relation in the contact surface
have been formulated. A common feature of these models is that they relate the
resultant tangential force in the contact surface to the relative strain rate between
the wheel and the rail in the ideal contact point. The ideal contact point can be
calculated under the assumption that both wheel and rail are perfectly rigid. Under
the assumptions made in our problem no more than one contact point exists on each
wheel. The relative strain rate normalized by the forward speed of the car is termed
the creepage. In general, the creepage consists of a part stemming from pure
translational sliding (the translational creepage) and a part due to the yaw motion
of the wheel, called the spin creepage.

The tangential forces in the contact surface, which will now be assumed to be a
plane, may be projected in a direction parallel to the direction of wheelset travel, and
in a direction orthogonal to it in the contact plane. The tangential force parallel to
the direction of wheelset travel is called the longitudinal creep force, and the other
component is called the lateral creep force.

The general form of the relation between the total creepage and the total creep
force is similar to the one shown in figure 2. The function is nonlinear owing to the
limitation of the forces imposed by the Coulomb friction law. The asymptotic limit
corresponding to the Coulomb friction law is attained in the limit of pure sliding.

The creep forces are the main ingredients in railway vehicle dynamics. Since the
theory yields a relation between the resultant creep force and the resultant creepage,
the longitudinal creep force has a reciprocal effect on the lateral creep force.
Furthermore the effect of spin creepage is to produce a lateral force. This contribution

Phil. Trans. R. Soc. Lond. A (1992)
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Figure 2. The creepage—creep-force relation by Vermeulen & Johnson (1964).

to the total lateral force reduces the longitudinal creep force; sometimes quite
substantially, so altogether there exists a rather complicated relation between all the
creepages and the components of the creep force.

It is now generally acknowledged that the most accurate creepage-creep-force
relations have been formulated by Kalker. In his book, Kalker (1990) describes his
results and compares them with other approximate solutions to the problem. To
describe the bifurcation phenomena in the proper way we need here a fully nonlinear
theory. Kalker’s fully nonlinear theory is complicated, and its numerical handling is
computationally expensive. We therefore use the formulas from Vermeulen &
Johnson (1964) to calculate the creep forces. In their theory they neglect spin creep,
but the saturation due to the Coulomb friction limit is taken into consideration. It
thus contains the most important nonlinear effects that are necessary to describe the
bifurcations. However, since spin creep is neglected we can only expect accurate
results when the yaw of the wheelset is of small magnitude and flange contact does
not occur.

Other theoretical results found by Knudsen et al. (1991) and G. Sauvage & J. P.
Pascal (personal communication), who all use more accurate creep force models,
show the same qualitative behaviour as our results. We therefore believe that our
results are at least qualitatively correct in the case of flange contact, and are very
accurate when the lateral displacements do not lead to flange contact.

When the flange of the wheelset touches the rail the restoring force suddenly grows
much faster with the lateral displacement. The very stiff spring with a dead band in
our model is just a simple simulation of that effect. There is very little doubt that it
is that change in apparent or real stiffness that is the main cause of the chaotic
behaviour of the wheelset. The results found will not depend qualitatively on the
details of the model of the flange contact forces.

The wheelset has two degrees of freedom. It can turn around a central vertical axis
and move laterally in its bearings. The equations of motion are formulated using
Newton’s second law on the solid wheelset under the action of the creep forces, the
flange forces and the spring forces. The equations of motion are shown in the next

Phil. Trans. R. Soc. Lond. A (1992)
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Model of a rolling railway wheelset 459
section together with the expressions for the creepage £, with the lateral component
£, the longitudinal component £, and the creep force Fj, with the lateral component
F, and the longitudinal component F,.

3. Equations of motion

Under the assumptions of §2 the equations of motion are as follows:

E.=2/V—¢, (1)

£, = agﬁ/V—!—Ax/TO, (2)

gl\’, = \/((gx/ 5U)2+ (gy/¢)2)> (3)

F, =&/ ¥) Fr/Er (4)

F, = (§,/P)Fy/&r, (5)

u = (Gna,b,/uN) &y, (6)

Fy = uN{“_%“iﬁ%“g’ ) ; z 7
ko(x—90), i<,

Fp(x) = 0, —0<z <4, (8)
ko(x+0), x <-4,

md%x/di?+ 2k, x+ 2F, + Fp(x) = 0, 9)

1d%¢p/de* + 2k, d} ¢+ 2aF, = 0. (10)

x denotes the lateral displacement, and ¢ the yaw angle. In table 1 we explain the
meaning of the other symbols and the values we have assigned to them in this article.
¥ and @ are coefficients calculated from Johnson’s formula using Hertz contact
theory.

4. The method of investigation

The mathematical model of our problem corresponds to a model of two coupled
oscillators. The nonlinear creepage—creep-force relation in the wheel-rail contact
points couples the two equations together.

We make the change of variables,

T=x, Xy=2, Xy =g, 954=¢é

(a dot above the variable denotes differentiation with respect to the independent
variable, time), to obtain the following fourth-order autonomous dynamical system :

&y = Xy, (11)
&y = —2(ky/m) 2y — (2/m) F,— (1/m) Fp(x,), (12)
&y = Ty, (13)
&y = = 2(ky di/1) 2y —2(a/]) F. (14)

The term containing k, is brought along for the sake of completeness, although
k, = 0 in this article.

We want to illustrate the dynamics of the wheelset model through bifurcation
diagrams with the speed V as the control variable.

The problem is investigated numerically, and we use several methods that
supplement each other to give the conclusions the best possible support.

Phil. Trans. R. Soc. Lond. A (1992)
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460 C. Knudsen, R. Feldberg and H. True
Table 1
constant  value description
m 1022 kg mass of wheelaxle
1 678 kg m? moment of inertia
a 0.716 m half of the track gauge
d, 0.620 m distance from centre of gravity to k,
7 808 MN m™ shear modulus
a, 6.578 mm major semiaxis of contact ellipse
b, 3.934 mm minor semiaxis of contact ellipse
0 9.1 mm dead band
kg 14.60 MN m™ spring constant
k, 1.823 x 10* N m™ spring constant
ky 0 MN m™ spring constant
¥ 0.54219 -
@ 0.60252 —
Ty 0.4572 m centred wheel rolling radius
A 0.05 -
0.15 coefficient of friction
HN 10 kN N is the vertical force between wheel and rail

Our strategy is to start with a solution (the trivial solution) that is known to be
agymptotically stable at sufficiently low speed. We then increase the speed in small
steps and follow the solution and the eigenvalues of its jacobian by numerical
solution of the system and numerical computation of the eigenvalues for each value
of the speed. When a bifurcation point is reached, we choose the path to be followed
in the phase-parameter space. When the increments in the control parameter are
adequate, the known solution will provide an excellent initial value for the
determination of the next solution on the path. The program ‘PATH  is used for the
investigations of the stationary and periodic solutions. The program was developed
by Kaas-Petersen (19860, 1989). Its most important feature is that it uses a mixture
of integration in time and Newton iteration to find the periodic solutions, whereby
the computational work is kept to a minimum. A periodic solution is treated as the
identity under a Poincaré map. In this way the program determines stable and
unstable solutions with the same accuracy. The Poincaré section is chosen by PATH
in such a way that it is ‘sufficiently transversal’ to the phase space trajectory. In the
chaotic régime we make both amplitude plots and Poincaré sections for different
speeds. Here the Poincaré sections are defined by x, =0 and z, assuming its
maximum value. The amplitude plots are combined with the results from PATH to
create our bifurcation diagrams. Furthermore a few interesting time series are
shown.

For the numerical integrations we use either the ‘LSODA’ routine, which
automatically switches between stiff and non-stiff solution methods whenever
needed (see Petzold 1983) or an eighth-stage explicit Runge—Kutta pair of order five
and six. It uses variable time step and error control. To approximate the solution
between integration steps, we use an interpolant with asymptotic error of the same
order as the global error for the numerical integration. The method was developed by
Enright et al. (1986). The flange forces introduce a discontinuity in the first
derivative of the lateral forces, but they remain continuous. We therefore use the two
integration methods for any value of the lateral displacement of the wheelset.

Phil. Trans. R. Soc. Lond. A (1992)
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Tigure 3. Bifurcation diagram for the wheelset. Only stable solutions are shown.

Tigure 4. Part of figure 3. Bifurcation diagram for the wheelset. The arrow points at the
unstable periodic solution branch, which is mentioned in the text.

PATH determines the solutions with a relative error of 107°. When we investigate
chaos, we let the integration in time continue until we are convinced, that the small
transients have died out. Then we start to construct the Poincaré section or
amplitude plot for that particular speed.

5. The results

In this section we describe the dynamical behaviour of the wheelset in the speed
range 0 < V < 50 m s7!, which corresponds to 0-180 km h™*.

At low speeds the trivial solution of our dynamical system is asymptotically stable.
The trivial solution corresponds to a stable rolling of the wheelset along the
centreline of the track.

When the speed grows, a supercritical Hopf bifurcation will be reached at V =
10.050 m s7'. The steady solution loses stability at that speed, and it remains
unstable for all speeds up to the maximum speed, we have investigated. The
bifurcating periodic solution has a period of 1.64 s, it is asymptotically stable and its
amplitude grows very fast with the speed. At V' = 10.056 m s™" the amplitude of the
oscillation is so large, that the flange hits the rail, and at still higher speeds the
wheelset will move chaotically. This chaotic behaviour has recently been found by
Meijaard (1991) in another wheelset model. The bifurcation diagram on figure 3
illustrates the dynamics of the wheelset up to ¥ = 15 m s™*. Figure 4 is an enlarged
picture of the chaotic range and the bifurcations up to V= 10.7 m s7". It is seen that
no periodic windows exist. The chaotic attractor contracts near V' = 10.2 m s™ onto
three bands, which grow narrower with growing speed. The central band converges
towards the flange contact point 0.0091 m from the left side. When this point is
reached at V approximately equal to 10.21 m s, the chaotic attractor explodes. At
still higher speeds the chaos concentrates onto four narrow bands which represent
two asymmetric oscillations with double period. These modes go through a reverse
period doubling at ¥ = 10.32 m s™!. The period doubling is verified by a calculation
of the Floquet multipliers. When we approach V =10.32ms™" from the right
following the phase-parameter space path a Floquet multiplier leaves the unit disc
through —1 at V= 10.32 m s7%. In this context please remember that the negative

Phil. Trans. R. Soc. Lond. A (1992)
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Figure 5 Figure 6
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Figure 5. Lateral oscillation against time at V' = 12.0 m s™*.

Figure 6. Lateral oscillation against time at V= 13.5 ms™!.

displacements are missing on the diagram. We see only the maximum value of each
of the two different modes. Both modes oscillate around its own off-centre neutral
line with a mean yaw different from zero. Their basins of attraction are separated by
the inset of an unstable, symmetric oscillation, which is also shown on figure 4. The
path of the unstable, symmetric oscillation enters the gap which separates the
chaotic symmetric solutions from the asymmetric ones, right in the middle. The
unstable solution can be traced deeply into the chaotic region from right to left.

At VV'=10.59 m ! the asymmetric solutions have flange contact at both rails.
Below that speed the flange only touches either the left or the right rail during one
period of oscillation. V = 10.59 m s™! is a bifurcation point, where the symmetric
oscillation becomes asymptotically stable in a ‘reverse symmetry breaking’. We find
that a Floquet multiplier enters the unit disc through +1, when V decreases through
10.59 m s7%

Figure 5 shows a short time series of the oscillation at V = 12 m s™'. One observes
the development of two new local extrema within one period, and figure 6 shows
these fully developed extrema. On figure 3 the lower curve indicates the development
of these new extrema as a function of V.

At V' = 13.81 m s7! these new extrema have grown to a value, where another flange
contact occurs at each of the rails during one period. A Floquet multiplier tends
towards —1, when V grows towards 13.81 m s™'. Figure 7 shows a blow up of the
bifurcation at the lower curve of figure 3 for V= 13.81 m s™!, where chaos develops.

Figure 8 shows the bifurcations for 1410 ms™' <V <14.90 ms™!, When V
decreases through 14.33 m ¢!, a Floquet multiplier leaves the unit disc through + 1.
The asymmetric solution with three positive plus two negative maxima and
fundamental period then changes into two, asymmetric solutions, which turn chaotic
for decreasing V. Notice again the flange contacts during one full period. The points
are marked with arrows on figure 8.

When V grows through 14.38, a Floquet multiplier goes through +1. We again
have flange contact and a broad band of chaos develops.

The right-most bifurcation point on figure 8 is at V = 14.83 m s7*. To the right of
14.83 we see two asymmetric oscillations ; each of them with two maxima within one
period. When V decreases through 14.83 m s, a Floquet multiplier leaves the unit

Phil. Trans. R. Soc. Lond. A (1992)
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Figure 7 Figure 8
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Figure 7. Enlarged part of figure 3 with the bifurcation to chaos at V= 13.81 m s7%.

Figure 8. Bifurcation diagram for the wheelset. Only stable solutions are shown. The disjoint parts
of the diagram represent different maxima of one and the same oscillation within one period. The
arrows mark points of flange contact.
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Figure 9. Bifurcation diagram for the wheelset. To the left two stable asymmetric oscillations are
found ; each with two maxima per period. In the middle one stable symmetric oscillation is found
with two maxima per period. To the right chaos is found with periodic windows.

Figure 10. Lateral oscillation against time. V = 25.0 m 7.

disc through —1, and a period doubling takes place. The maximum on the lowest
branch grows very fast with decreasing V, and when the flange hits the rail during
that part of the cycle, chaos immediately develops.

Figure 9 illustrates the behaviour in the range 15 ms™ <V <50 m s™'. When V
grows through 17.23 ms™', the two asymmetric solutions undergo a ‘reverse
symmetry breaking’, and a new symmetric oscillation with two maxima develops.
Figure 10 shows a short time series of the oscillation of the wheelset at ' = 25 m s71.
The symmetric oscillation of the wheelset ‘bangs’ between the rails with two
consecutive flange contacts at each rail before the wheelset moves over to flange
contact with the other rail.

This symmetric oscillation exists, and it is asymptotically stable up to V =
35.20 m s7!. When ¥V grows through 35.20 m s™ one Floquet multiplier leaves the
unit disc through + 1. Broad band chaos is seen to develop explosively on figure 9,
and we believe that the bifurcation to chaos is through intermittency. As an evidence

Phil. Trans. R. Soc. Lond. A (1992)
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Tigure 11. A projection of a Poincaré section for a chaotic solution at V' = 37.0 m s™*. (#) Shows the
upper part and (b) the lower part of the section. Notice the asymmetry and the kink at 9.1 x 107 m.
The section is defined by x, = 0.
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Tigure 12. The same as figure 11 except for the speed V., which is now 45.0 m s™%.

of the chaotic motion in the speed range 35.20 m s™' < ¥V < 38.5 m s we present a
Poincaré section for V' =37 m s7! on figure 11. Figure 11a shows the upper part of
the section and 11b the lower part. The layered structure does not appear clearly
with this resolution, but the disconnected stripes are typical of chaotic motion.

The periodic window around V =40 m s™! contains a symmetric solution with
three maxima. When the speed decreases from 40 through V' = 39.78 m s, a Floquet
multiplier leaves the unit disc through —1 and a period doubling sequence starts.
With decreasing speed the chaos finally develops, which we have already described.

When the speed increases from 40 through 40.58 m 7!, a Floquet multiplier leaves
the unit disc through + 1 and chaos develops explosively. The bifurcation is similar
to the bifurcation at V' = 35.20 m s™', and again we believe, that the bifurcation to
chaos happens through intermittency.

On figure 12 we show a Poincaré section at V = 45.0 m s™*. Figure 12a shows the
upper and 126 the lower part of the section. Figure 12 is similar to figure 11, but the
stripes are thicker and longer on figure 12 reflecting the more violent chaotic motion,
which could be expected at the higher velocity, where more energy will be fed into
the disturbance. Notice the asymmetry on figures 11 and 12 and the kink in the
attractor at the lateral deviation 0.0091 m. The kink lies exactly where the wheel
flange contacts the rail. The asymmetry of the chaotic attractors can be considered
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Figure 13. An enlarged part of figure 3. It shows the development of chaos without periodic
windows for 10.05ms*! < V< 10.08 ms*.

Figure 14. A “first return map’ for ;. V= 10.125 m s™*.

a common feature of chaotic behaviour in rail vehicle dynamics. It was noticed
carlier by True (1989), G. Sauvage & J. P. Pascal (personal communication) and
Knudsen et al. (1991).

At the end of the speed range, when V tends towards 50 m s™' the chaos
concentrates onto narrow bands, but a well-defined subharmonic solution does not
appear.

6. Investigation of chaotic behaviour by symbolic dynamics

Figure 13 shows an enlarged portion of the left part of figure 4. We see chaotic
behaviour in the speed interval 10.056 m s™! < ¥V < 10.080 m s™! without periodic
windows. The lack of periodic windows makes it possible to extend the investigation
of chaotic behaviour at a given speed to a whole range. We have examined several
Poincaré sections in the speed interval 10.075 m s™ < V < 10.175 m s™*. They all
share the same qualitative structure, and they will therefore not be shown here.

Instead we show on figure 14 a first return map at the speed V = 10.125 m s7*. We
have plotted the value of 2, in the n plus first intersection with our Poincaré section
against its value in the nth intersection.

The structure of the points constituting the first return map is remarkably close
to a one-dimensional curve. We have examined several first return maps in the speed
interval, and they are all very similar. Therefore we chose to show only one of them.

The n axis can be divided into five intervals, which are characterized by the
number and sequence of flange contacts in one full return map. They are numbered
1, to I, on figure 14. I, contains the points, which describe a motion with flange
contact only at its maximum, when the trajectory returns to the Poincaré section.
The points in I, have an additional flange contact at the minimum of x,. The points
in I, characterize a motion that starts without flange contact; there is flange
contact at the minimum of z, but none when the trajectory returns to the Poincaré
section. The points in /, start with flange contact; there is another flange contact at
the minimum of x,, and there may or may not be flange contact, when the trajectory
returns to the Poincaré section. Finally, /; contains the points of a motion, which
initially has flange contact, has no flange contact at the minimum of xz;, and may or
may not have flange contact, when it returns to the maximum value. As the speed
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466 C. Knudsen, R. Feldberg and H. True

is decreased through approximately 10.107 m s™, a qualitative change occurs, in

that the points in [, may or may not have flange contact when the trajectory returns
to the Poincaré section.

The shape of the first return map suggests an investigation of the chaotic
behaviour by the method of symbolic dynamics. We shall therefore define and
investigate a one-dimensional iterated map on an interval, f: [ -1, where [ = U2_, I,.
[ is assumed to be continuous everywhere and differentiable everywhere except on
the boundaries between the subintervals.

We require that f maps the five intervals onto each other in the following way:

JU) =1, fil) = L, UL, fily) = LU UL, fil) =1 fil) = ;U1 UL

We impose the following restrictions on the derivative of f:0 <a < f'({
O<b<—fly);1<ce<—f'U);1<d<f'I)andl <e<—f'({ Allthb(onstdnts
a,...,e are assumed to be poswlvc. We add the additional (‘onstralntq. aec > 1,
aed > 1, aee > 1, bd > 1 and eb > 1.

We would like to show that f is chaotic on /. First, we show that / contains an
attracting set, which is in fact / itbelf. From the definition of f we easily see that [
is an attracting set since N2, f*¥([) = 1. Second, we show that / is a strange attractor
for f. To achieve that we must bhOW (i) that f exhibits sensitive dependence on initial
conditions in all of /, and (ii) that / is topologically transitive under f.

ad (i) fhas a derivative with modulus less than one only in the intervals /, and /,.
Let us consider first an orbit passing throu(rh 1,. This orbit will ﬁrqt enter [, and next

enter either 1y, I, or I,. Then either |(f?)'([,)| > aee > 1, or > aec > 1 or > aed > 1.
\Text we COHbld(,I‘ an orblt passing through [ When mel , then f(x)e 1, U I;, but then
[(f2)(I,)] > bd > 1or >eb> 1. Thus f will cxpand m‘o(,rvalg and thu’(,fore exhibits

scnsitivc dependence on the initial conditions.

ad (ii) From (i) it follows, that for any subset U < I there exists a positive integer
n, such that f"(U) o I, and therefore [ is topologically transitive under f. Combining
(i) and (ii) we have proven that [ is a strange attractor for f.

Up to here we only have shown the existence of a strange — or chaotic - attractor,
but we know nothing about its global structure yet.

Let us extend our analysis to the global structure of all periodic and non-periodic
orbits by applying symbolic dynamics on five symbols, each corresponding to one of
the five subintervals of /. We define the itinerary of a point x €I as the infinite symbol
sequence S(x) = 8 = 8,8, 8,8, ..., where s, is 1if f¥(x)el,, and similarly for the other
four subintervals. It is clcaf that for any point x there exist one and only one
itinerary. Please note that the six boundary points make up a five-cycle. We
therefore know the future of all six boundary points under f, so we are not concerned
with these points in the following.

The possible itineraries are given by the transition matrix 4 (Wiggins 1988, pp.
102-103), which is

00 0 01
00 0 1 1
A= 1 1 1 0 0
11 1 1 1
00 1 1 1

The transition matrix 4 contains a 1 for the transition (¢,7) if f(/;) = I, and a 0
otherwise. An itinerary is allowed if for all transitions s;s,,; the transition matrix
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Model of a rolling railway wheelset 467

contains a 1, (4),,,, = 1. The set of all possible itineraries are called 2, and it is
possibie to Verlfy that Jfon 1 istopologically conjugate to o4, where o, is the subshift
of finite type (Wiggins 1988, pp. 101-108). We can therefore describe the dynamics
of f on I by considering the dynamics of o, on 2',. Note that the transition matrix
reveals that there exist a subset of I, U I, where the dynamics of f are chaotic on a
Cantor set, which is topologically conjugate to the full shift on two symbols, with all
sequences allowed. The existence of this set is caused by the unstable fixed point in
1,, which has a non-degenerate homoclinic orbit in [, U /.
We next define a metric d on 2, by

=y ls—5
dis,8) = £ 271 i
im0 LF1s;—s
It can easily be verified that if d(s,5) < 1/2*! then s; = 3§, ¢« <M, and if s, = s,
© <M then d(s,3) < 1/2M.
We want to prove the following.

Theorem. [ on [ s topologically conjugate with o, on X, under the homeo-
morphism S.

Proof. We must show that §: /-2, is a homeomorphism.

S is one-to-one. For any « # y in [, there exists a positive integer n, such that f*(x)
and f"(y) belong to different intervals, because f expands intervals.

S is onto. For any symbolic sequence s, allowed by the transition matrix 4 there
exists exactly one point x€l, such that S(x) = s, since f expands intervals.

S is continuous. Given ¢ > 0, we consider an arbitrary xzel. First we pick a
positive integer n such that ¢ > 2"V Since z is not a boundary point then,
by continuity of f, there exist a neighbourhood U of z, such that for any yeU,
d(S(z),S(y)) < €. From x and U we can now choose a & > 0, such that the relation
Ye>030>0]x—y| <d=d(S(x),S(y)) < ¢ holds.

S~!is continuous. Given s = 5)8,8,,...,8,,...,€2,,& = 87(s) is not a boundary
point. Because of continuity of f, then for a given ¢ > 0, we can find a neighbourhood
U of x, such that S(U) = sy, ...8,%, where % is any infinite symbolic sequence such
that the entire sequence is allowed by the transition matrix 4. We can now choose
a & < 1/2" such that for ye U then d(S(y),s) < d=|x—y| <e.

Thus we have shown that S is a homeomorphism. It is easy to see that S(f) =
o 4(8) holds. QED.

Having showed the topological conjugacy between f and o,, we are now in a
position to make statements about the global structure of orbits for f by considering
the much simpler function o .

It can be shown that the number of points z, for which f*(x) = z, for some positive
integer k, is the trace of the transion matrix to the power k. The number of periodic
orbits of prime period k, N(k), can then be calculated by

N(k) = (tr (4¥)— X N@)9)/k,
1<i<k;tlk

where tr denotes the trace, and 7|k means ‘¢ divide k£’. From A it can be shown that
the trace of 4 to the power k can be expressed recursively as

tr (A%) = 3tr (A% 1) — tr (A%2) 4+ 3tr (A% 3) —tr (A%%), k> 4.
Phil. Trans. R. Soc. Lond. A (1992)
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468 C. Knudsen, R. Feldberq and H. True
Table 2
i tr (A%) N(k) k tr (4%) N(k)
1 3 3 11 156 027 14184
2 7 2 12 462703 38496
3 27 8 13 1372179 105552
4 79 18 14 4069303 290520
5 228 45 15 12067812 804 504
6 679 108 16 35787967 2236374
7 2019 288 17 106131819 6243048
8 5983 738 18 314741623 17484624
9 17739 1968 19 933389139 49125744
10 52612 5238 20 2768033284 138399030

This recursive formula for the trace can be solved analytically and the solution is

+GFB 4+ 134+ /(6(1+4/13)  + (H3+ 4/ 13—1/(6(1 ++/13))))*.

Note that for large k the second term dominates. Table 2 shows the trace and number
of prime periodic orbits for £ up to 20. An analytic expression for the topological
entropy can also be given:

b= log (M3 4+/13+ v/ (6(1++/13)))).

7. Conclusions

The results presented here help us to understand the complicated behaviour of a
rolling wheelset in its dependence on its speed. Very soon after the supercritical Hopf
bifurcation, where the trivial solution loses its stability, the first chaotic speed
interval appears. With growing speed the chaos alternates with periodic symmetric
or asymmetric solutions. It is very interesting to notice the dominance of asymmetry
in the chaotic as well as in the periodic behaviour. The asymmetric oscillations will,
if they persist over longer distances, be the cause of lopsided wear of the wheelset.
When a wheelset gets unsymmetric the trivial solution becomes unstable for lower
speeds, so the wheelset will run more in the asymmetric modes than it did before and
the result is an amplification of the hunting motion.

Lopsided wear has been observed on several occasions, where simple explanations
were found. We are, however, left with many cases that can only be satisfactorily
explained by assuming that the wheelset has oscillated asymmetrically.

The results also demonstrate that chaotic behaviour, as such, is no more dangerous
or undesirable than violent periodic motion.

We have only examined one set of characteristic parameter values for the
wheelset. To help the engineers improve the dynamics of the wheelset the effects of
the change of the other parameters on the dynamics of the wheelset must be
examined. The most important parameters are the wheel and rail geometries, the
coefficient of adhesion, the axle load and the spring stiffness; here a torsional spring
and damper should be added to the suspension. We shall continue our investigations
along these lines with the main emphasis on realistic wheel and rail profiles and stiffer
spring.
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Finally, we emphasize that our symbolic dynamics calculations show that the
phenomenon of chaos in the model is structurally stable.

A part of this work (H.T.) was supported by the Danish Council for Scientific and Industrial
Research, grant no. 16-4786.M.
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